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Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

Addendum to Occasional Paper 50 

Our paper “Quantifying the High-Frequency Trading ‘Arms Race’: A Simple New Method-

ology and Estimates” first circulated in January 2020 as Financial Conduct Authority Occa-

sional Paper 50.1 We received comments on the Occasional Paper from several academics 

and industry participants. In response to these comments we conducted several additional 

analyses which we report here. 

Pattern of Takes, Cancels, and Liquidity Provision 

Figure 1 Panel A shows that about 90% of races are won with a take (i.e., aggressive 

order or snipe attempt) with the remaining 10% won by a cancel. This finding that most 

races are won by aggressive orders was suggested by numbers reported in Table 5.4 of the 

Occasional Paper, which reported the split between take messages and cancel messages in 

races, but the specific figure that 90% of races are won with a take was not reported. 

Figure 1 Panel B provides data on the pattern of successful takes, successful cancels, 

and liquidity provision across firms. The top 6 firms, as defined by the proportion of races 

won as shown in Figure 5.2 of the Occasional Paper, account for about 80% each of race 

wins, liquidity taken in races, and liquidity successfully canceled in races. In contrast, these 

6 firms account for about 42% of all liquidity provided in races — that is, of all of the trading 

volume in races, 42% is volume where the resting order had been provided by one of the 

top 6 firms. 

Within these top 6 firms there are two distinct patterns of race participation. 2 of the top 

6 firms together account for 28% of race wins, 22% of liquidity taken, 61% of successful 

cancels in races, and 31% of all liquidity provided in races. These data suggest that these 

2 firms engage in meaningful quantities of both stale-quote sniping and liquidity provision; 

their ratio of liquidity taken in races to liquidity provided in races is about 2:3. The remaining 

4 of the top 6 firms together account for 54% of race wins, 57% of liquidity taken, 21% of 

successful cancels, and just 11% of all liquidity provided in races. These data suggest that 

these 4 firms engage in significantly more stale-quote sniping than liquidity provision; their 

ratio of liquidity taken in races to liquidity provided in races is 5:1. We therefore denote 

these two groups of firms as “Balanced in Top 6” and “Takers in Top 6”, respectively.2 

Market participants outside of the top 6 firms account for about 20% each of race wins, 

liquidity taken in races, and liquidity successfully canceled in races. Where they stand out 

is that they account for 58% of all liquidity provided in races; that is, they provide nearly 

3 times as much liquidity in races as they take. 

Thus, on net, much race activity consists of firms in the top 6 taking liquidity from 

market participants outside of the top 6. This taking is especially concentrated in a subset 

of the fastest firms who account for a disproportionate share of stale-quote sniping relative 

to liquidity provision. The modal trade in our race data consists of a Taker in Top 6 firm 

taking from a market participant outside the top 6 (34.3% of all race volume). There is 

also significant race activity that consists of the fastest firms taking from each other. This 

1Please see https://www.fca.org.uk/publications/occasional-papers/occasional-paper-no-50-quantifying-high-
frequency-trading-arms-race-new-methodology%20 

2Previous studies that document heterogeneity across HFT firms with respect to their taking and liquidity pro-
vision behavior include Benos and Sagade (2016) and Baron et al. (2019). Benos and Sagade (2016) report that 
the most aggressive group of firms in their sample has an aggressiveness ratio of 82%, which means that 82% of 
their overall trading volume is aggressive, with the remaining 18% passive. Baron et al. (2019) report that the 
90th percentile of firms in their sample has an aggressiveness ratio of 88%. 
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 %  of  Race  Volume  by  Taker-Provider  Combination 

 Provider 

 Takers  in  Top  6  Balanced  in  Top  6  Non-Top  6 

 Takers  in  Top  6  5.7  17.2  34.3 

 Taker  Balanced  in  Top  6  2.5  6.4  13.3 

 Non-Top  6  3.2  7.4  10.1 

 Notes:  For  each  race  detected  by  our  baseline  method  (see  Section  4.2  of  the  Occasional  Paper  for  detailed descrip-
 tion)  we  obtain  all  executed  trades,  and  for  each  executed  trade  we  obtain  the  FirmID  of  the  participant  who  sent  the 
 take  message  that  executed  and  the  FirmID  of  the  participant  whose  resting  order  was  passively  filled.  The  FirmIDs 

 are  classified  into  firm  groups  as  described  in  the  text.  Each  cell  of  the  matrix  reports  the  percentage  of  GBP  trading 
 volume  associated  with  that  particular  combination  of  taker  firm  group  and  liquidity  provider  firm  group. 

   

Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

volume is especially likely to consist of a Taker in Top 6 firm sniping a Balanced in Top 6 

firm (17.2%). Please see Table 1 for a matrix of race trading volume organized by such 

taker-provider combinations. 

Figure 1: Pattern of Takes, Cancels, and Liquidity Provision 

Panel A: Races Won by Takes vs. Cancels Panel B: Analysis by Firm Group 
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Notes: Panel A: For each FTSE 100 race detected by our baseline method (see Section 4.2 of the Occasional Paper 
for detailed description) we obtain whether the first successful message (i.e., S1) is a take or a cancel. Panel B: The 
first bar, % Races won, reports the data depicted in Figure 5.2 of the Occasional Paper aggregated by firm group, 
with the firm groups as described in the text. The second bar, % Successful Taking in Races, is computed by taking 
all trading volume in all FTSE 100 races detected by our baseline method, and utilizing the FirmID associated with 
the aggressive order in each trade. For each bar, the numerator is the total quantity taken in races by firms in that 
group, in GBP, and the denominator is the total quantity traded across all races in GBP. The third bar, % Successful 
Canceling in Races, is computed by taking all successful cancels in FTSE 100 races detected by our baseline method, 
and utilizing the FirmID associated with the cancel attempt. For each bar, the numerator is the total quantity canceled 
in races by firms in that group, in GBP, and the denominator is the total quantity canceled across all races in GBP. The 
fourth bar, % Liquidity Provided in Races, is computed by taking all trading volume in all FTSE 100 races detected by 
our baseline method, and utilizing the FirmID associated with the passive side of each trade, i.e., the resting order 
that was taken by the aggressive order utilized in the % Successful Taking bar. For each bar, the numerator is the 
total quantity provided in races by firms in that group, in GBP, and the denominator is the total quantity traded across 
all races in GBP. 

Table 1: Liquidity Taker-Provider Matrix 
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Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

Race Price Impact Distributions at Different Time Horizons 

Figure 5.3 of the Occasional Paper reported the distribution of race profits at different mark-

to-market time horizons. Figure 2 in this addendum includes these race profits distributions 

as Panel A and the corresponding distributions of race price impact as Panel B. The difference 

between the two measures is that race profits are the difference between the price paid in 

the race and the midpoint price in the future, whereas price impact compares the midpoint 

at the time of the first inbound message in the race (i.e., just prior to its effect on the order 

book) to the midpoint price in the future (i.e., price impact does not charge the winner of 

the race the half bid-ask spread). The price impact panel shows that, at shorter horizons, 

races with negative profits almost always have weakly positive price impacts, meaning that 

the source of the negative profit is the aggressor in the race not recovering the half bid-ask 

spread. 

Figure 2: Race Profits and Price Impact Distributions at Different Time Horizons 

Panel A: Race Profits Panel B: Race Price Impact 
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Notes: For each race detected by our baseline method (see Section 4.2 of the Occasional Paper for detailed descrip-
tion) we obtain per-share profits and price impact in basis points at different mark to market horizons ranging from 
1 millisecond to 100 seconds. Profits at horizon T are defined as the signed difference between the race price and 
the midpoint price at time T , while price impact at horizon T is the signed difference between the midpoint price at 
the time of the first inbound message of the race (i.e., before that message affects the order book) and the midpoint 
price at time T . The figure plots the kernel density of the distribution of per-share profits (Panel A) and per-share 
price impact (Panel B), each in basis points, at different time horizons. To make the distributions readable, we drop 
all of the mass at exactly zero profits or price impact. 
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Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

Modifications to the Spread Decomposition Table 

Table 2 replaces Table 5.9 in the Occasional Paper with two modifications. First, we report 

price impact in races and not in races with different aggregation that is more interpretable. 

Specifically, we value-weight all trading in races and report the price impact in such trading 

in basis points, and similarly we value-weight all trading not in races and report the price 

impact in such trading in basis points. For example, for FTSE 100 symbols (Panel A), the 

overall price impact in our sample (value-weighted over all trades) has a mean of 3.62 basis 

points, price impact in races is higher on average at 5.11 basis points, and price impact in 

non-race trading is lower on average at 3.15 basis points.3 

Second, we include the realized spread in race trading and non-race trading. For ex-

ample, for FTSE 100 symbols, the average realized spread in in-race trading is -1.93 basis 

points, and the average realized spread in non-race trading is +0.15 basis points. 

3The Occasional Paper instead decomposed the 3.62 basis points into the component from in-race trading and 
the component from non-race trading, such that these two components sum to the total of 3.62 basis points (of 
which 1.24 basis points comes from in-race trading and 2.38 basis points comes from non-race trading). 
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Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

Table 2: Spread Decomposition 

Panel A: FTSE 100 by Symbol 

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 
Effective spread paid - overall (bps) 3.27 1.22 1.22 1.75 2.28 3.18 4.13 4.91 5.79 
Effective spread paid - in races (bps) 3.18 1.22 0.99 1.70 2.21 3.17 4.05 4.89 5.98 
Effective spread paid - not in races (bps) 3.29 1.22 1.25 1.78 2.30 3.17 4.15 4.96 5.71 
Price impact - overall (bps) 3.62 1.36 1.40 1.92 2.52 3.56 4.52 5.55 6.99 
Price impact - in races (bps) 5.11 1.83 2.02 2.85 3.48 4.90 6.50 7.56 8.81 
Price impact - not in races (bps) 3.15 1.16 1.21 1.66 2.21 3.17 3.97 4.67 5.99 
Loss avoidance (bps) 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.03 
Realized spread - overall (bps) -0.36 0.32 -1.07 -0.76 -0.55 -0.35 -0.17 0.01 0.39 
Realized spread - in races (bps) -1.93 0.70 -3.72 -2.83 -2.40 -1.79 -1.42 -1.11 -0.88 
Realized spread - not in races (bps) 0.15 0.30 -0.35 -0.20 -0.05 0.08 0.34 0.56 0.90 
PI in races / PI total (%) 33.16 6.09 19.99 24.88 29.53 32.13 37.23 41.72 44.72 
PI in races / Effective spread (%) 36.90 7.18 19.79 27.73 33.06 36.59 41.97 46.44 51.67 

Panel B: FTSE 250 by Symbol 

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 
Effective spread paid - overall (bps) 8.06 3.81 2.65 4.63 5.59 7.14 9.84 13.10 19.11 
Effective spread paid - in races (bps) 6.74 3.03 2.42 4.32 4.97 6.08 7.63 9.96 15.62 
Effective spread paid - not in races (bps) 8.22 3.87 2.72 4.70 5.72 7.31 9.94 13.34 19.55 
Price impact - overall (bps) 8.09 3.54 2.64 4.96 5.71 7.10 9.40 12.95 19.91 
Price impact - in races (bps) 12.22 6.19 4.04 7.17 8.82 10.72 13.75 18.12 33.42 
Price impact - not in races (bps) 7.50 3.52 2.36 4.37 5.09 6.40 8.79 12.39 19.39 
Loss avoidance (bps) 0.01 0.02 -0.02 0.00 0.00 0.01 0.01 0.02 0.07 
Realized spread - overall (bps) -0.04 1.14 -2.30 -1.02 -0.53 -0.14 0.34 0.96 2.67 
Realized spread - in races (bps) -5.48 3.68 -20.22 -9.36 -6.14 -4.43 -3.44 -2.73 -1.62 
Realized spread - not in races (bps) 0.72 1.07 -0.97 -0.13 0.20 0.59 1.07 1.76 3.14 
PI in races / PI total (%) 21.60 9.50 1.79 6.00 14.89 22.98 28.19 32.16 39.60 
PI in races / Effective spread (%) 22.50 10.92 1.58 5.62 14.84 23.57 30.44 34.79 47.67 

Panel C: Full Sample by Date 

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max 
Effective spread paid - overall (bps) 3.17 0.27 2.74 2.92 3.06 3.12 3.22 3.38 4.52 
Effective spread paid - in races (bps) 2.99 0.13 2.64 2.84 2.90 2.99 3.06 3.16 3.28 
Effective spread paid - not in races (bps) 3.22 0.32 2.77 2.95 3.09 3.17 3.29 3.44 4.90 
Price impact - overall (bps) 3.38 0.19 2.96 3.19 3.23 3.38 3.52 3.61 3.80 
Price impact - in races (bps) 4.82 0.24 4.35 4.53 4.66 4.79 4.99 5.07 5.55 
Price impact - not in races (bps) 2.99 0.19 2.57 2.79 2.86 2.95 3.13 3.29 3.38 
Loss avoidance (bps) 0.01 0.00 -0.01 0.00 0.00 0.01 0.01 0.01 0.01 
Realized spread - overall (bps) -0.22 0.23 -0.62 -0.38 -0.31 -0.26 -0.15 -0.09 1.08 
Realized spread - in races (bps) -1.83 0.17 -2.43 -2.01 -1.92 -1.81 -1.74 -1.64 -1.51 
Realized spread - not in races (bps) 0.23 0.26 -0.17 0.05 0.14 0.20 0.29 0.34 1.68 
PI in races / PI total (%) 30.58 2.64 22.91 27.88 29.88 30.81 31.93 33.39 35.81 
PI in races / Effective spread (%) 32.82 3.73 17.38 29.92 31.60 33.66 34.70 36.54 39.52 

Notes: Please see the text of Section 5.5 of the Occasional Paper for definitions of Effective Spread, Price Impact (PI), 
Loss Avoidance, and Realized Spread. Panel A reports the distribution of these statistics by symbol, for all symbols 
in the FTSE 100. Panel B reports the distribution for all symbols in the FTSE 250. We only include symbols that have 
at least 100 races summed over all dates; this drops about one-quarter of FTSE 250 symbols and does not drop any 
FTSE 100 symbols. Panel C reports the distribution of these statistics by date for the full sample. 

June 2020 5 



           

            

 

               

                  

               

                

                 

              

               

             

              

                  

                 

                

                 

                  

                

                    

                  

           

              

                 

                

        

         

       

          

        

   

        

        

  

          

          

                     
                     

                     
                        

                     
                     

                     
                   

                  
               

                   
                      

                 
          

   

Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

The Realized Spread is Negative in Races for Both Fast and Slow 

Firms 

The negative realized spread in races does not appear to discriminate much by firm speed. 

For the top 6 firms as defined by the proportion of races won (see Figure 5.2 of the Occa-

sional Paper) the realized spread in races is -1.699 basis points, versus -1.930 basis points 

for firms outside the top 6. The difference between the Takers and Balanced firms in the 

top 6 is small as well: -1.493 basis points versus -1.775 basis points. Please see Table 3. 

Similarly, both fast and slow firms earn a modestly positive realized spread in non-race 

liquidity provision. For the top 6 firms the realized spread in non-race liquidity provision is 

0.347 basis points versus 0.152 basis points for firms outside the top 6. 

There is a more significant difference between faster and slower firms in their canceling 

behavior. The top 6 firms attempt to cancel in races about 35% of the time within the race 

horizon, and about 39% of the time within 1 millisecond of the starting time of the race. 

Within these top 6 firms, the maximum cancel rate is 66% within the race-horizon and 68% 

of the time within 1 millisecond. Firms outside of the top 6 attempt to cancel just 7.57% 

of the time within races and 9.47% of the time within 1 millisecond of the starting time of 

the race. If we look beyond 1 millisecond to include any failed cancel attempts of quotes 

taken in a race, the top 6 cancel attempt rate goes up to 40% and the cancel rate for firms 

outside of the top 6 goes up to 13.35%.4 Thus, fast firms are about five times more likely 

to attempt to cancel in a race than are slower firms. 

Together, these results reinforce the idea that latency arbitrage imposes a tax on liquidity 

provision — it is expensive to be the liquidity provider who gets sniped in a race. The 

fastest firms are better than slower firms at avoiding this cost, but even they get sniped 

with significant probability if their quotes become stale. 

Table 3: Realized Spreads in Races by Firm Group 

Realized Spread (bps) Cancel Attempt Rate (%) 

Firm Group Overall Non-Race Race In Race Within 1ms Ever 

All Firms -0.209 0.236 -1.833 19.29 21.89 24.53 

Fast vs. Slow 

Top 6 -0.086 0.347 -1.699 35.35 38.94 39.88 

All Others -0.302 0.152 -1.930 7.57 9.47 13.35 

Within Fast 

Takers in Top 6 0.016 0.455 -1.493 45.16 47.56 47.82 

Balanced in Top 6 -0.120 0.311 -1.775 30.97 35.09 36.33 

Notes: Firm groups are as in Figure 1. The realized spread is calculated as in Table 2. To calculate the cancel 
attempt rates we first compute, for each firm, the number of races in which they have a cancel attempt within the 
race horizon, the number of races in which they either have a cancel attempt within the race horizon or a cancel 
attempt within 1 millisecond of the start of the race for an order taken in the race, the number of races in which they 
either have a cancel attempt within the race horizon or a cancel attempt anytime after the race horizon for an order 
taken in the race, and the number of races in which they either have a successful cancel or provide liquidity (each 
is measured at the relevant price and side for the race). We then aggregate into the firm-group cancel rates by, for 
the numerator, summing the number of races with cancel attempts over all firms in the group (possibly counting the 
same race multiple times), and for the denominator, summing the number of races with either cancel attempts or 
liquidity provision over all firms in the group (possibly counting the same race multiple times). 

4For firms in the top 6 essentially all of the incremental failed cancels come within 3 milliseconds after the 
race start (98.57% of all cancel attempts are within 3ms of the race start). For firms outside the top 6 the large 
majority of the incremental failed cancels come by 3 milliseconds after the race start (85.73%), and essentially 
all come by 1 second after the race start (99.43%). 
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Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

Theory Appendix 

We also received feedback to provide additional theoretical support, in the form of an ap-

pendix, for three theoretical issues discussed in the text of the Occasional Paper. First, dis-

cussion of equilibrium in the case where the firm providing liquidity is slow. Second, more 

detailed support for the analysis behind the bid-ask spread decomposition (5.3). Third, 

more detailed support for equation (5.6) and its empirical counterpart (5.7), which express 

the proportional reduction of the cost of liquidity if latency arbitrage were eliminated. 

Equilibrium with Slow Liquidity Providers 

In the equilibria of the continuous limit order book market studied in Budish, Cramton and 

Shim (2015), fast trading firms both engage in stale-quote sniping and provide all of the 

market’s liquidity. There is a fringe of slow trading firms but they play no role in these 

equilibria (see especially Section VI.D and Proposition 3). The slow firms only play a role in 

equilibrium in Budish, Cramton and Shim (2015) under the frequent batch auctions market 

design. 

In the BCS equilibria of the continuous market, fast trading firms are indifferent be-

tween liquidity provision and stale-quote sniping at the equilibrium bid-ask spread sCLOB , 

characterized by 
CLOB CLOB s 

�invest 2 = �publicL( 
s 

2 ), (1) 

where �invest denotes the arrival rate of investors (i.e., liquidity traders), �public denotes 
CLOB CLOB CLOB CLOB 

the arrival rate of new public information, and L( s ) � Pr(J � s )E(J− s |J � s )2 2 2 2 

denotes the expected loss to a liquidity provider if there is a jump larger than their half-

spread and they get sniped (J is the random variable describing the absolute value of jump 

sizes). In the event of a jump larger than the half-spread, stale-quote snipers are successful 

N 
1 of the time, where N is the number of fast trading firms, and hence earn expected

profits of 1 �publicL( s CLOB 
). A fast trading firm that provides liquidity earns revenues ofN 2 

CLOB s �invest from providing liquidity to investors, but, if there is a public jump, they get 2 
N−1 N−1 sniped with probability , hence incurring costs of 

CLOB 
). At the equilibriumN N �publicL( s 

2 

spread, the revenue benefits of liquidity provision less these sniping costs net to the same 
CLOB 1 

N �publicL( s 
2 ) earned by snipers. This net profit can be interpreted as the fast liquidity

provider earning the opportunity cost of not sniping. 

Under slightly different modeling formalities, introduced in Budish, Lee and Shim (2019), 

there also exist equilibria in which slow trading firms provide liquidity, at exactly the same 
CLOB s bid-ask spread characterized by 1, and the N fast trading firms all engage in stale-2 

quote sniping. The economic intuition for why this can also be an equilibrium is as follows. 

First, at this bid-ask spread, slow trading firms earn zero profits from liquidity provision, 

so slow trading firms are indifferent between liquidity provision here, and doing nothing as 

before. Second, with all N fast trading firms now engaged in sniping, and the bid-ask spread 
CLOB 1 the same as before, the fast trading firms all earn the same profits of N �publicL( s 

2 ) as

before. And, as before, at this bid-ask spread the fast trading firms are indifferent between 

providing liquidity or being one of N − 1 snipers, so they do not strictly prefer to change

from sniping to liquidity provision. 

Formally, the configuration of play in which a slow trading firm provides liquidity at the 

spread characterized by 1 (or its slight generalization to include adverse selection as well, 

presented as equation (5.2) in the main text) is an Order Book Equilibrium as defined in 
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Addendum to Occasional Paper 50: Quantifying the High-Frequency Trading “Arms Race” 

Budish,  Lee  and  Shim  (2019).  The  argument  that  this  play  constitutes  an  Order  Book  

Equilibrium  is  as  follows:  

• If  the  slow  TF  deviates  by  widening  their  spread  to  s 0 > sCLOB:  another  TF  (whether

slow  or  fast)  can  profitably  undercut  the  deviation  by  providing  liquidity  at  a  better

spread.  Order  Book  Equilibrium  requires  that  any  deviation  be  robust  to  another  TF

providing  better  liquidity  in  response,  so  this  potential  deviation  does  not  violate  Order

Book  Equilibrium.

• If  the  slow  TF  deviates  by  narrowing  their  spread  to  s 0 < sCLOB :  they  earn  strictly

negative  profits  as  opposed  to  zero  profits,  so  this  is  not  a  profitable  deviation.

• If  a  fast  TF  undercuts  the  slow  TF’s  spread  to  s 0 < sCLOB:  this  is  a  profitable  unilateral

deviation  for  a  fast  TF  for  s0 close  enough  to  sCLOB,  because  the  fast  TF  gets  to  both  earn
1positive  expected  profits  from  liquidity  provision,  of  just  less  than   (  

C B  
� icL s LO

publ ),  andN 2 

potentially  snipe  the  slow  TF  (the  “have  your  cake  and  eat  it  too”  deviation).  However, 

the  deviation  is  not  robust  to  the  slow  TF  canceling  in  response.  Order  Book  Equilibrium 

requires  that  deviations  are  robust  to  other  firms’  responses  with  either  cancels  or  price 

improvements  (“no  robust  deviations”).5

• If  any  other  slow  TF  undercuts  to  s 0 < sCLOB:  this  is  not  a  profitable  unilateral  deviation

for  slow  TFs,  because  sCLOB is  the  bid-ask  spread  at  which  slow  TFs  earn  zero  expected

profits  from  liquidity  provision.  (The  reason  why  providing  liquidity  at  s0 close  enough

to  sCLOB is  profitable  for  a  fast  TF  but  not  a  slow  TF  is  that  fast  TFs  get  sniped  with
1probability  N−   ,  whereas  slow  TFs  get  sniped  with  probability  1.) N 

Thus  there  exist  order  book  equilibria  in  which  fast  TFs  provide  all  liquidity  as  well  as  order  

book  equilibria  in  which  slow  TFs  provide  all  liquidity.  It  follows  that  there  also  exist  order  

book  equilibria  in  which,  proportion  ˆfast 2 (0, 1)  of  the  time,  a  fast  TF  provides  liquidity  at

sCLOB,  while  the  remaining  1  − ˆfast of  the  time  a  slow  TF  provides  liquidity  at  s CLOB .  Either 
1way,  the  spread  is  the  same,  the  profits  of  all  fast  TFs      (  

  
are the same (  � L s CLOB

public )),  andN 2 

the  profits  of  all  slow  TFs  are  zero.  

Support for Bid-Ask Spread Decomposition (5.3) 

Equation (5.3) in the main text provides a novel bid-ask spread decomposition that includes 

Price Impact both in and out of races, as well as a Loss Avoidance term for the case where 

a liquidity provider successfully cancels in a race. In this section we provide formal support 

for this decomposition. 

Begin with the bid-ask spread characterization presented in the main text as (5.2), 

2 2
where �public and �private denote the arrival rate of public and private information, respec-

CLOB 
tively, and L( s 

2 ) denotes the expected loss to a liquidity provider conditional on getting

5This case is the key technical difference between the modeling approach in Budish, Lee and Shim (2019) versus 
that in BCS. In the continuous-time game form considered in BCS a fast TF undercutting a slow TF in this way is 
a profitable deviation for the fast trading firm, because, in the small amount of time before a slow trading firm 
is able to respond to this deviation, the deviating fast trading firm both earns potential revenues from liquidity 
provision and earns potential profits from sniping the slow trading firm. In contrast, the Order Book Equilibrium 
concept introduced in Budish, Lee and Shim (2019) requires that the order book is at a resting point, where, if 
any one trading firm can profitably deviate from this resting point the deviation is no longer profitable after other 
trading firms respond with either price improvements or cancelations. 
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sniped or adversely selected. For simplicity, we assume that the jump size J is identically 

distributed for public and private information, and that all jumps are of size of at least the 
CLOB s equilibrium half-spread , so all jumps generate attempts to trade. These assumptions 2 

can be relaxed but at considerable notational burden.6 With these assumptions, we have 
CLOB CLOB 

L( s s 7 
2 ) = E(J) − 2 . 

As discussed in the previous subsection, there exist equilibria in which only fast TFs 

provide liquidity, only slow TFs provide liquidity, and in which both fast and slow TFs provide 

liquidity. The former case was emphasized in BCS but the latter case appears to fit the data 

better. Let ˆfast 2 [0, 1] denote the proportion of liquidity provided by fast TFs in equilibrium 

with the remaining 1 − ˆfast provided by slow TFs. We can now formally define the terms 

utilized in equation (5.3). 

ˆf ast s CLOB 
• E�ectiveSpread is equal to [�invest +�public(1− N )+�private]· 2 . Trade occurs whenever 

an investor arrives (at rate �invest ), whenever an informed trader arrives (�private), and 

whenever there is public news (�public) and the race is won by a sniper: which occurs 

with probability N−1 if the TF providing liquidity is fast, where N is the number of fast N 

traders, and probability 1 if the TF providing liquidity is slow, hence total probability of 
N−1 ˆf ast ˆfast + (1 − ˆfast) = 1 − . N N 

ˆf ast ˆf ast • PriceImpactRace is equal to �public(1 − ) · E(J): the �public(1 − ) probability that a N N 

sniper wins a race, times the size of the jump E(J), which will be the change in the 
CLOB CLOB s ˆf ast midpoint. Using L( s ) = E(J) − this can be rewritten as �public(1 − )E(J) = 2 2 N 

CLOB CLOB ˆf ast + L( s �public(1 − )( s )). N 2 2 

• PriceI mpactNonRace, by similar logic, is equal to �privateE(J): the �private probability that 

there is an informed trader times the size of the jump E(J), which will be the change 
CLOB CLOB 

+ L( s in the midpoint. This can be rewritten as �privateE(J) = �private( s 
2 2 )). 

ˆf ast L( s ˆf ast • LossAvoidance is equal to �public 
CLOB 

): the �public probability that a fast liq-N 2 N 

uidity provider wins a race with a cancel, times the size of the avoided loss L( s CLOB 
). 2 

Now take the equilibrium bid-ask spread as characterized in equation (5.2), 

CLOB CLOB s 
L( 

s 
�invest = (�public + �private) · ), 2 2 

6Formally, if Jprivate and Jpublic are, respectively, the jump distributions for private and public informa-
tion, with cumulative distribution functions Fprivate(x) and Fpublic(x), respectively, then the conditional distri-

CLOB − Fprivate(x)−F ( s ) 
private 2 

butions of interest are J� and J� with cdf’s F � (x) = CLOB and F � (x) = private public private − public 1−F ( s ) 
private 2 

CLOB 
Fpublic(x)−F ( s 

2 ) CLOB CLOB 
− 
public s s , respectively, for x � and F � (x) = F � (x) = 0 for x < . − ( s

CLOB 2 private public 2 1−F ) 
public 2 

7In the generalization described in the previous footnote the appropriate formulas to use are Lprivate( s CLOB 
) � 2 

CLOB CLOB CLOB 
E(J� )− s ) � E(J� )− s . In the mathematics that follows it is then convenient private 2 and Lpublic( s 

2 public 2 
CLOB CLOB − to define �� 

public = �public(1 − F
public ( s 

2 )) and �� 
private = �private(1 − Fprivate 

− ( s 
2 )) as the arrival rates of 

jumps that are larger than the equilibrium spread. 
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ˆ f ast s CLOB 
and add ( � public (1 − N ) + �private ) · 2 to both sides of the equation. This yields 

� � CLOB ˆ fast s 
�invest + �public(1 − ) + �private · 

N 2� � � � CLOB CLOB CLOB ˆfast ) + s s ˆfast = �public (1 − �private · + L( ) + �public L( 
s ). 

N 2 2 N 2

If we substitute in terms as defined above, this in turn yields 

E�ectiveSpread = PriceImpactRace + PriceImpactNonRace + LossAvoidance. 

We follow the spread decomposition literature and include RealizedSpread as the residual in

this equation for the purpose of bringing it to data, yielding equation (5.3) in the text: 

E�ectiveSpread = PriceImpactRace + PriceImpactNonRace + LossAvoidance + RealizedSpread. 

              

 
   

 
 

 

            

            

            

  
   

     
 

   

               
 

    

  
  

    

 
    

 
   

              
  

 

   

   
 

 
 

 
  

       
 

   

      
 

          

   
   

          

 

   
    

         
 

   

             

We start with equation (5.4) in the main text, which defines this proportional reduction 

theoretically: 
s CLOB F BA 

− s 
2 2 

sCLOB 

2 

where sCLOB denotes the equilibrium bid-ask spread in the continuous limit order book 

market, and sF BA denotes the equilibrium bid-ask spread in the frequent batch auctions 

market, which eliminates sniping. Next, multiply both the numerator and denominator by 

(�invest + �private):
CLOB F BA s 

(
(� invest + �private)( s 

2 − 2 )
CLOB s �invest + � private) 2 

Next, use the bid-ask spread characterization (5.2) in the main text to solve out for 
CLOB s � invest in the numerator: 2 

CLOB CLOB F BA 
L s s (�public + �private) · ( 2 ) + �priv ate 2 − ( �invest + �private)( s 

2 )
CLOB s (�invest + � private) 2 

F BA s Analogously, use equation (5.1) of Budish, Lee and Shim (2019) to solve out for �invest 2 

in the numerator: 

CLOB CLOB F BA F BA s s ( s s (�public + �private ) · L ( 2 ) + �private 2 − � privateL 2 ) − �private( 2 )
CLOB s (� invest + � private ) 2 

CLOB 
( s Next, regroup terms to place �public · L 2 ) on the left of the numerator, and then

CLOB F BA s s utilize L( ) = E(J) − s for �privateL( s ) and � privateL( ):2 2 2 2 

CLOB CLOB CLO B F BA F BA 
L s s s s s �public · ( ) + �private(E(J ) − 2 ) + � private − �private(E(J) − ) − �private( 2 )2 2 2 

CLOB (�invest + �private) s 
2 

Observe that most of the terms in the numerator cancel. Specifically, we have �private(E(J)− 
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CLOB CLOB F BA F BA s s s ) + �private − �private(E(J) − ) − �private( s ) = 0. This leaves us with: 2 2 2 2 

CLOB 
L( s �public · 2 ) 

CLOB (�invest + �private) s 
2 

as claimed in the text as equation (5.6). Equation (5.6)’s empirical implementation, 

equation (5.7), then follows immediately as described in the main text. 
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