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Abstract

In financial markets, dealers may take advantage of information
asymmetries and extract a rent from buy-side traders. We show that
an increase in the precision of a benchmark reduces noise in market
prices and increases expected demands by overcoming traders’ and
regulators’ inability to penalize dealers sufficiently. Regulations that
increase precision can therefore have positive effects on the overall
market.

1 Introduction
Many industries, but particularly the financial services industry, use bench-
marks to settle contracts, monitor trade executions, and signal the prices
available in the market. However, until very recently, benchmarks were not
subject to any regulation. This changed in 2013 when the Financial Conduct
Authority started regulating the London InterBank Offered Rate (LIBOR)
and subsequently in 2015 when it started regulating seven additional bench-
marks. Since 2013, many international organizations such as IOSCO and the
Financial Stability Board have developed guidance and rules on benchmarks,
and the EU Benchmark Regulation entered into force in January 2018. So,
many interventions have taken place in this area.

Recent theoretical work by Duffie, Dworczak, and Zhu (2017) shows that
the existence of a benchmark improves the matching process in over-the-
counter markets and can increase social welfare under conditions. When dis-
cussing welfare effects Duffie, Dworczak, and Zhu (2017) compare the case
where a benchmark exists to the case where it does not. In this paper we
focus on understanding the theoretical impact of an increase in the "qual-
ity" of the benchmark, since this is the likely result of the aforementioned
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regulations. We model the regulatory intervention as a reduction in noise
in the benchmark fixing process and hence an increase in precision of the
benchmark. Our results imply that effective regulation of a benchmark can
reduce noise in market prices and increase expected demands, providing a
theoretical rationale for many of the recent regulatory interventions in this
area.

In our model, traders cannot observe dealers’ marginal costs but, as in
Duffie, Dworczak, and Zhu (2017), they can observe a public signal aggregat-
ing the information (the benchmark). Differently from Duffie, Dworczak, and
Zhu (2017) the benchmark is measured with noise in our setting. The noise
represents traders’ different interpretations of the same signal (because of a
lack of precision in the benchmark fixing) and imperfections in the bench-
mark assessment by dealers themselves (because of a lack of quality in the
production costs data).

Due to the information asymmetry between dealers and traders, traders
have to pay more than the efficient cost, and this reduces their welfare. To
solve this problem, traders and regulators can decide to "punish" the dealers
if the benchmark realization shows they are taking advantage of their posi-
tion (by charging a high price). However, penalties are limited: traders can
only decide not to buy from the dealers, and the regulatory fines necessary to
restore the optimal allocation may be too high to be practically implemented.

The constraints preclude the implementation of the optimal outcome,
which is for traders to pay a price equal to dealers’ true cost of production.
We show that a policy that reduces the noise in the benchmark fixing process
overcomes these limitations and restores the optimal outcome. In practice,
such a policy would be very similar to the imposition of systems and controls
that was central to the rules introduced by the FCA in 2013 and extended
to other benchmarks in 2015.
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2 The model

2.1 Structure of the model

We start with a market with risk neutral dealers and traders. As in Duffie,
Dworczak, and Zhu (2017), n dealers sell a homogeneous good to a continuum
of traders who differ in search costs. The timing of the game is as follows:

• Nature draws dealers’ marginal costs, traders’ search costs, and the
benchmark realization;

• Dealers move first and set the price of the good;

• Traders observe the prices in the market and the benchmark realization,
and decide whether to enter the market.

2.2 The benchmark

A trader either buys one unit of good and pays price pi to Dealer i, or stays
outside the market. Each dealer supplies the same good from the wholesale
market and has a cost of production ai for each unit. Productions costs,
which are also marginal costs, are heterogeneous and reflect dealers’ effi-
ciency. A dealer with a low a is more efficient than a dealer with a high a.
Moreover, each dealer only knows her own marginal cost.

Traders cannot observe dealers’ marginal costs, but they use the bench-
mark y to observe with noise the average cost of production among dealers.
The benchmark y is therefore defined as

y =
n∑
i=1

ai
n

+ ε (1)

where ε ∼ F (0, σ2) is the noise component, with density f and cumulative
distribution F . As σ → 0, the benchmark becomes more precise, so the noise
represents the accuracy of the benchmark fixing.

2.3 Quantities sold by the different dealers

The n dealers sell a homogeneous good and post prices ordered from the
lowest to the highest
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p1 ≤ p2 ≤ · · · ≤ pn

We assume that traders expect to find any of the prices with equal prob-
abilities1

Pr(p1) = · · · = Pr(pn) = 1/n

The price distribution is common knowledge among traders, but traders
don’t know whether the price charged by the next dealer will be higher or
lower if they continue searching. For tractability, we also assume a trader
can always go back to a previous dealer.

Traders have heterogeneous search costs, and G(x) represents the share
of traders with costs lower than x. We assume the following uniform distri-
bution

G(x) =

{
x
s

if 0 ≤ x ≤ v − p∗
v−p∗
s

if x > v − p∗
(2)

where v is the value attached to the good by every trader; p∗ ≡
∑

j pj/n

is the average price; and s is the density for 0 ≤ x ≤ v − p∗2.

In equilibrium each trader j stops searching and pays pi when the ex-
pected gain from searching a price lower than pi equals j’s search costs. The
equilibrium condition is therefore:

xj =
i−1∑
k=1

(pi − pk)Pr(pk) (3)

where xj is j’s search costs, and
∑i−1

k=1(pi−pk)Pr(pk) is the expected gain
from searching a price pk lower than pi.

Let qi be the quantity demanded to a dealer with price pi. A dealer with
price pi sells to two groups of traders:

1This assumption leads to closed-form solutions for the demand curves. If we do not
assume a uniform distribution, similar results hold - for example see Duffie, Dworczak,
and Zhu (2017) - but the math would be more complex.

2We scale the distribution by the average (retail) price p∗ to simplify the algebra. The
case without scaling is in the appendix.
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• Traders who randomly found pi, despite being willing to pay a price
pi+1 > pi (the demand of dealers with prices higher than pi);

• Traders with search costs higher than the expected gain from searching
for a price lower than pi.

Both types of traders are represented formally in the equation below

qi = qi+1 +
1

i
[G(xi+1)−G(xi)]

Using the equilibrium condition (3), the expected demand for the dealer
with price pi simplifies to (Carlson and McAfee (1983) provides the proof,
but we reproduce it in the appendix)

qi =
v − pi
sn

(4)

As expected, the demand for Dealer i depends positively on traders’ val-
uation of the good (v), and negatively on the price Dealer i charges (pi). The
demand for a single dealer is also affected by the density of traders and the
number of dealers on the market (sn).

2.4 Prices

As in Duffie, Dworczak, and Zhu (2017), traders can exit the market if the
benchmark realization is below a certain threshold3, meaning that dealers are
overcharging them. If traders leave the market, demand drops and dealers
need to charge a lower price. We model this behavior using the penalty pa-
rameter ∆4. In the next section, we will model what happens as the threshold
ȳ changes, but we focus on dealers’ profits for the time being.

3We are assuming that traders have an incentive to penalize the dealers by exiting the
market because in expectation this behavior leads to a lower price. In the appendix, we
show that this is equivalent to assuming that traders particularly value the good.

4The penalty parameter describes, in a reduced form, the behavior of a repeated game
where a trader would cease any activity with the dealer if the realization of the signal is
below the threshold - for an analogous structure see Ritter and Taylor (2011). In other
words, we are simplifying the behavior of the traders - who could either stop trading with
a specific dealer or exit the market altogether - since it produces the same result in both
cases: a reduced expected demand for the dealer.
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Profits of dealer i are

πi ≡
[
F

(
ȳ −

∑
i ai
n

)
(pi −∆) +

(
1− F

(
ȳ −

∑
i ai
n

))
pi − ai

]
qi (5)

where pi is the price offered by Dealer i; F
(
ȳ −

∑
i ai
n

)
is the probabil-

ity that the realization of the benchmark is below the threshold ȳ; ∆ is the
penalty when the signal realization is below the threshold.

Competition among dealers drives their expected profits to 0, from (5) it
follows that

pi = ai + ∆F

(
ȳ −

∑
i ai
n

)
(6)

and from (4), qi =
[
v − ai −∆F

(
ȳ −

∑
i ai
n

)]
/sn, which clarifies that

traders punish the dealers by exiting the market when they infer the marginal
costs are below the threshold (and so dealers overcharge them).

Each dealer i sets the price pi to minimize the penalty ∆, which yields
(the proof is in the appendix):

∆ =
n

f
(
ȳ −

∑
i ai
n

)
By substituting this equation back into (6), we obtain

pi = ai + n
F
(
ȳ −

∑
i ai
n

)
f
(
ȳ −

∑
i ai
n

) (7)

Therefore, dealers add a mark-up on top of the cost of production to
determine the price at which they are wiling to sell. In the moral hazard
literature, this mark-up is known as "information rent" as it relies on dealers’
information advantage.
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2.5 Threshold and precision

We can now analyze traders’ behavior as the threshold ȳ changes (as in
Holmström (1982)). We assume F is normally distributed. Then, from (7),
as traders decrease the threshold at which they would leave the market (ȳ →
−∞), the penalty for dealers increases (∆→ +∞), and F

(
ȳ −

∑
i ai
n

)
/f
(
ȳ −

∑
i ai
n

)
→

0, implying that traders achieve their first best pi = ai in which dealers don’t
charge any mark-up at all.

However, traders cannot achieve ȳ → −∞ as production costs cannot be
negative. Moreover, an external authority (e.g. the regulator) cannot achieve
∆→ +∞, as this level of regulatory fines is simply impossible.

Another way in which the outcome can be moved towards the optimal one
is to reduce the noise in the benchmark. To see this, suppose that traders
choose the optimal threshold level ȳ after observing the price pi. Traders
maximize their utility

max
ȳ
v − pi(ai, ȳ)

from which we obtain the following equation for the price set by each
dealer i (the derivation is in the appendix):

pi = ai + nσ
h(ζ)

h′(ζ)
(8)

where ζ ≡ ȳ−
∑

i ai
n

σ
, and h(ζ) is ζ’s density function.

Equation (8) is the crucial result of the model. An increase in precision
reduces the noise in the benchmark fixing process (σ) and moves the out-
come closer to the first best. If the noise in the benchmark fixing process is
eliminated, i.e. σ = 0, then the first best can be achieved irrespectively of
the level of penalties. In such a case, traders pay a price that matches the
exact cost of production of each dealer.
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3 Conclusions
This note provides a theoretical underpinning for many of the rules intro-
duced in relation to benchmarks in recent years. These rules have increased
precision of the benchmarks by introducing regulatory control over the bench-
mark fixing process and thereby reducing the possibility of benchmark ma-
nipulation.

Aquilina, Ibikunle, Mollica, and Steffen (2017) show that underlying liq-
uidity improved in the USD interest rate swaps market following the shift to
regulation of the associated benchmark (the ICE Swap Rate). Their study
lends some empirical support to the results of our theoretical model.

A Appendix

A.1 Carlson and McAfee (1983) proof

First, we can write the expected gain from searching a price lower than pi
and the expected demand qi as

i−1∑
k=1

(pi − pk)Pr(pk) ≡
1

n

[
(i− 1)pi −

i−1∑
k=1

pk

]
(9)

qi =
n∑
k=i

1

k
[G(xk+1)−G(xk)] ≡

1

n
G(xn+1)− 1

i
G(xi) +

n∑
k=i+1

1

k(k − 1)
G(xk)

(10)
Second, by induction the following equivalence holds

n∑
k=i+1

1

k(k − 1)
=
n− i
ni

(11)

Then, from (10) and the cost distribution (2)

qi =
v − p∗

sn
− xi
si

+
n∑

k=i+1

xk
sk(k − 1)

In equilibrium, the search cost equals the expected gain from searching a
lower price, then using (9), we obtain
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qi =
1

sn

v − p∗ −
[
(i− 1)pi −

∑i−1
j=1 pj

]
i

+
n∑

k=i+1

[
(k − 1)pk −

∑k−1
j=1 pj

]
k(k − 1)


=

1

sn

{
v − p∗ − pi +

1

i
pi +

∑i−1
j=1 pj

i
+

n∑
k=i+1

pk
k
−

n∑
k=i+1

k−1∑
j=1

pj
k(k − 1)

}

=
1

sn

{
v − p∗ − pi +

∑i
j=1 pj

i
+

n∑
k=i+1

pk
k
−

n∑
k=i+1

k−1∑
j=1

n− i
ni

pj

}

=
1

sn

{
v − p∗ − pi +

∑i
j=1 pj

i
+

n∑
k=i+1

pk
k
−

n∑
k=i+1

k−1∑
j=1

pj
i

+
n∑

k=i+1

k−1∑
j=1

pj
n

}

=
1

sn

{
v − p∗ − pi +

n∑
j=1

pj
n

}

=
1

sn
{v − p∗ − pi + p∗}

=
v − pi
sn

A.2 Derivation of ∆

Dealers set the price pi to minimize the penalty ∆. From the quantity equa-
tion (4) and the price equation (6), we obtain

qi =
v − ai −∆F

(
ȳ −

∑
i ai
n

)
sn

Dealers know traders expect pi = ai and, arranging the previous equation,
we obtain

∆ =
v − pi − snqi
F
(
ȳ −

∑
i pi
n

) (12)

So, each dealer i solves

min
pi

∆
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from the first order conditions it follows that

−1 +
v − pi − snqi
F
(
ȳ −

∑
i pi
n

) f
(
ȳ −

∑
i pi
n

)
n

= 0

and using (12), we finally obtain

∆ =
n

f
(
ȳ −

∑
i pi
n

)
A.3 Derivation of pi
Traders maximize their utility

max
ȳ
v − pi(ai, ȳ)

Using the price equation (6), from the first order conditions we obtain

n

1−
F
(
ȳ −

∑
i ai
n

)
f ′
(
ȳ −

∑
i ai
n

)
f 2
(
ȳ −

∑
i ai
n

)
 = 0

from which

F

(
ȳ −

∑
i ai
n

)
=
f 2
(
ȳ −

∑
i ai
n

)
f ′
(
ȳ −

∑
i ai
n

)
Using this result, the price equation (7) becomes

pi = ai + n
f
(
ȳ −

∑
i ai
n

)
f ′
(
ȳ −

∑
i ai
n

) (13)

To explicit the role of precision in benchmark fixing, define ζ ≡ ȳ−
∑

i ai
n

σ
,

and let h(ζ) be ζ density function. Then, by changing the variable in (13),
we obtain

pi = ai + nσ
h(ζ)

h′(ζ)
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A.4 The model without scaling

To avoid scaling the support of the distribution in (2), we need to assume
that the benchmark affects each dealer with a different probability of being
punished.

Without scaling the distribution, we would have

G(x) =

{
x
s

if 0 ≤ x ≤ v
v
s

if x > v
(14)

From Appendix A.1, this distribution would lead to

qi =
v + p∗ − pi

sn

With different probabilities for each dealer i, we would have

pi = ai + n
Fi

(
ȳ −

∑
j aj

n

)
fi

(
ȳ −

∑
j aj

n

)
Then,

qi =

v +
∑n

k=1 ak
n
− ai + n

[∑n
k=1

Fk

(
ȳ−

∑
j aj
n

)
nfk

(
ȳ−

∑
j aj
n

) − Fi

(
ȳ−

∑
j aj
n

)
fi

(
ȳ−

∑
j aj
n

)
]

sn

By following the steps as in A.3, we obtain

qi =
v +

∑n
k=1 ak
n
− ai + n

[∑n
k=1

σk
n
hk(ζk)
h′k(ζk)

− σi hi(ζi)h′i(ζi)

]
sn

where ζi ≡
ȳ−

∑
i ai
n

σi
.

When we do not scale the distribution, marginal costs’ and noise’s effects
on the expected demand are with respect to the average marginal cost and
noise in the market. We have inefficiencies also in this case: an efficient
dealer (

∑n
k=1 ak
n

> ai) may have a low demand just because noise affects him
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more than market average (
∑n

k=1
σk
n
hk(ζk)
h′k(ζk)

< σi
hi(ζi)
h′i(ζi)

). As in the case where
we scale the distribution, an increase in precision moves the outcome closer

to the first best which, in this case, is pi = ai and qi =
v+

∑n
k=1 ak
n

−ai
sn

.

A.5 The model without penalty ∆

If no penalty ∆ is available, then each dealer i would choose his price pi to
maximize his profits given the expected demand (while in the penalty case
he chooses pi to minimize ∆), i.e.

max
pi

piqi − aiqi

using (4)

max
pi

(pi − ai)
v − pi
sn

From the first order conditions we obtain

pi =
v + ai

2

Therefore, we need ∆ to map the noise in benchmark fixing into the prices.

Moreover, we have seen that in case the penalty ∆ is available, the price
equation is

pi = ai + nσ
h(ζ)

h′(ζ)

Then, traders have an incentive to punish the dealers if the price with ∆
is lower than the price without it:

v + ai
2

> ai + nσ
h(ζ)

h′(ζ)

from which

v > ai + 2nσ
h(ζ)

h′(ζ)

Therefore, the implicit assumption is that traders highly value the good
they are trading.
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